Damage assessment of bending structures using support vector machine
نویسندگان
چکیده
A damage detection method utilizing Support Vector Machine (SVM) for bending structures is proposed. The SVM was recently proposed as a new technique for pattern recognition. The SVM is a powerful pattern recognition tool applicable to complicated classification problems and is effectively utilized in the method. Based on the modal frequency changes, the damage location and its severity are defined by the SVM. In our previous studies, it was shown that our proposed method worked very well for structures modeled by shear frames. However, this modeling is only appropriate for lowrise building structures and is not appropriate for tall buildings. Therefore, it is our purpose here to extend the method to bending frames that are appropriate models for tall buildings. In the analytical evaluation, we constructed the finite element models to represent bending structures. Then, we conducted a series of experiments for verification. We could show that the damage detection method using SVM was also possible and effective for bending structures.
منابع مشابه
Assessment the Performance of Support Vector Machine and Artificial Neural Network Systems for Regional Flood Frequency Analysis (A Case Study: Namak Lake Watershed)
Flood discharge estimation with different return periods is one of important factors for water structures design and installation. On the other hand, a lot of rivers existing in Iran watersheds have no complete and accurate hydrometric data. In these cases, one of the suitable solutions to estimate peak discharges with different return periods is the regional flood analysis. In this research, 5...
متن کاملMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کامل